2 resultados para Freshwater lake

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this project was to investigate the influence of a large inland lake on adjacent coastal freshwater peatlands. The specific aim was to determine the source of groundwater for three differently formed peatlands located on the southern shore of Lake Superior. The groundwater study was conducted at Bete Grise, a peatland complex in a dune-swale system; Pequaming, a peatland developed in the swale of a tombolo; and Lightfoot Bay, a peatland developed in a barrier beach wetland complex. To determine the source of groundwater in the peatlands, transects of six groundwater monitoring wells were established at each study site, covering distinctly different vegetation zones. At Pequaming and Lightfoot Bay the transects monitored two vegetation zones: transition zone from upland and open fen. At Bete Grise, the transects monitored dunes and swales. Additionally, at all three sites, upland groundwater was monitored using three wells that were installed into the adjacent upland forest. Biweekly measurements of well water pH and specific conductance were carried out from May to October of 2010. At each site, vegetation cover, peat depths and surface elevations were determined and compared to Lake Superior water levels. From June 14 – 17, July 20 – 21 and September 10 – 12, stable isotopes of oxygen (18O/16O) ratios were measured in all the wells and for Lake Superior water. A mixing model was used to estimate the percentage of lake water influencing each site based on the oxygen isotope ratios. During the sampling period, groundwater at all three sites was supported primarily by upland groundwater. Pequaming was approximately 80 % upland groundwater supported and up to 20 % Lake water supported in the uppermost 1 m layer of peat column of the transition zone and open fen. Bete Grise and Lightfoot Bay were 100 % upland groundwater supported throughout the season. The height of Lake Superior was near typical levels in 2010. In years when the lake level is higher, Lake water could intrude into the adjacent peatlands. However, under typical hydrologic conditions, these coastal peatlands are primarily supported by upland groundwater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biogeochemical processes in the coastal region, including the coastal area of the Great Lakes, are of great importance due to the complex physical, chemical and biological characteristics that differ from those on either the adjoining land or open water systems. Particle-reactive radioisotopes, both naturally occurring (210Pb, 210Po and 7Be) and man-made (137Cs), have proven to be useful tracers for these processes in many systems. However, a systematic isotope study on the northwest coast of the Keweenaw Peninsula in Lake Superior has not yet been performed. In this dissertation research, field sampling, laboratory measurements and numerical modeling were conducted to understand the biogeochemistry of the radioisotope tracers and some particulate-related coastal processes. In the first part of the dissertation, radioisotope activities of 210Po and 210Pb in a variability of samples (dissolved, suspended particle, sediment trap materials, surficial sediment) were measured. A completed picture of the distribution and disequilibrium of this pair of isotopes was drawn. The application of a simple box model utilizing these field observations reveals short isotope residence times in the water column and a significant contribution of sediment resuspension (for both particles and isotopes). The results imply a highly dynamic coastal region. In the second part of this dissertation, this conclusion is examined further. Based on intensive sediment coring, the spatial distribution of isotope inventories (mainly 210Pb, 137Cs and 7Be) in the nearshore region was determined. Isotope-based focusing factors categorized most of the sampling sites as non- or temporary depositional zones. A twodimensional steady-state box-in-series model was developed and applied to individual transects with the 210Pb inventories as model input. The modeling framework included both water column and upper sediments down to the depth of unsupported 210Pb penetration. The model was used to predict isotope residence times and cross-margin fluxes of sediments and isotopes at different locations along each transect. The time scale for sediment focusing from the nearshore to offshore regions of the transect was on the order of 10 years. The possibility of sediment longshore movement was indicated by high inventory ratios of 137Cs: 210Pb. Local deposition of fine particles, including fresh organic carbon, may explain the observed distribution of benthic organisms such as Diporeia. In the last part of this dissertation, isotope tracers, 210Pb and 210Po, were coupled into a hydrodynamic model for Lake Superior. The model was modified from an existing 2-D finite difference physical-biological model which has previously been successfully applied on Lake Superior. Using the field results from part one of this dissertation as initial conditions, the model was used to predict the isotope distribution in the water column; reasonable results were achieved. The modeling experiments demonstrated the potential for using a hydrodynamic model to study radioisotope biogeochemistry in the lake, although further refinements are necessary.